Bootstrap multiscale analysis and localization for multi-particle continuous Anderson Hamiltonians

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-particle Dynamical Localization in a Continuous Anderson Model with an Alloy-type Potential

acting in L(R). This means that we consider a system of N interacting quantum particles in R. Here x = (x1, . . . , xN ) ∈ R Nd is for the joint position vector, where each component xj ∈ R d represents the position of the jth particle, 1 ≤ j ≤ N . Next, ∆ stands for the Laplacian in R. The interaction energy operator U(x) acts as multiplication by a function U(x). Finally, the term V(ω;x) repr...

متن کامل

Quantum correlations in two-particle Anderson localization.

We predict quantum correlations between noninteracting particles evolving simultaneously in a disordered medium. While the particle density follows the single-particle dynamics and exhibits Anderson localization, the two-particle correlation develops unique features that depend on the quantum statistics of the particles and their initial separation. On short time scales, the localization of one...

متن کامل

Eigenvalue Fluctuations for Lattice Anderson Hamiltonians

We consider the random Schrödinger operator−ε−2∆(d) +ξ (ε)(x), with ∆(d) the discrete Laplacian on Zd and ξ (ε)(x) are bounded and independent random variables, on sets of the form Dε := {x ∈ Zd : xε ∈ D} for D bounded, open and with a smooth boundary, and study the statistics of the Dirichlet eigenvalues in the limit ε ↓ 0. Assuming Eξ (ε)(x) = U(xε) holds for some bounded and continuous funct...

متن کامل

Anderson Localization for a Multi-particle Model with Alloy-type External Potential

We establish exponential localization for a multi-particle Anderson model in a Euclidean space R, d ≥ 1, in presence of a non-trivial short-range interaction and an alloy-type random external potential. Specifically, we prove that all eigenfunctions with eigenvalues near the lower edge of the spectrum decay exponentially.

متن کامل

A Wegner estimate for multi-particle random Hamiltonians

We prove of a Wegner estimate for a large class of multiparticle Anderson Hamiltonians on the lattice. These estimates will allow us to prove Anderson localization for such systems. A detailed proof of localization will be given in a subsequent paper.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Spectral Theory

سال: 2015

ISSN: 1664-039X

DOI: 10.4171/jst/103